293 research outputs found

    Decentralized Discrete-Time Neural Network Controller for a Class of Nonlinear Systems with Unknown Interconnections

    Get PDF
    A novel decentralized neural network (NN) controller in discrete-time is designed for a class of uncertain nonlinear discrete-time systems with unknown interconnections. Neural networks are used to approximate both the uncertain dynamics of the nonlinear systems and the unknown interconnections. Only local signals are needed for the decentralized controller design and the stability of the overall system can be guaranteed using the Lyapunov analysis. Further, controller redesign for the original subsystems is not required when additional subsystems are appended. Simulation results demonstrate the effectiveness of the proposed controller. The NN does not require an offline learning phase and the weights can be initialized at zero or randomly. Simulation results verify the theoretical conclusions

    Reinforcement Learning Neural-Network-Based Controller for Nonlinear Discrete-Time Systems with Input Constraints

    Get PDF
    A novel adaptive-critic-based neural network (NN) controller in discrete time is designed to deliver a desired tracking performance for a class of nonlinear systems in the presence of actuator constraints. The constraints of the actuator are treated in the controller design as the saturation nonlinearity. The adaptive critic NN controller architecture based on state feedback includes two NNs: the critic NN is used to approximate the strategic utility function, whereas the action NN is employed to minimize both the strategic utility function and the unknown nonlinear dynamic estimation errors. The critic and action NN weight updates are derived by minimizing certain quadratic performance indexes. Using the Lyapunov approach and with novel weight updates, the uniformly ultimate boundedness of the closed-loop tracking error and weight estimates is shown in the presence of NN approximation errors and bounded unknown disturbances. The proposed NN controller works in the presence of multiple nonlinearities, unlike other schemes that normally approximate one nonlinearity. Moreover, the adaptive critic NN controller does not require an explicit offline training phase, and the NN weights can be initialized at zero or random. Simulation results justify the theoretical analysi

    Reinforcement Learning-Based Output Feedback Control of Nonlinear Systems with Input Constraints

    Get PDF
    A novel neural network (NN) -based output feedback controller with magnitude constraints is designed to deliver a desired tracking performance for a class of multi-input-multi-output (MIMO) discrete-time strict feedback nonlinear systems. Reinforcement learning in discrete time is proposed for the output feedback controller, which uses three NN: 1) a NN observer to estimate the system states with the input-output data; 2) a critic NN to approximate certain strategic utility function; and 3) an action NN to minimize both the strategic utility function and the unknown dynamics estimation errors. The magnitude constraints are manifested as saturation nonlinearities in the output feedback controller design. Using the Lyapunov approach, the uniformly ultimate boundedness (UUB) of the state estimation errors, the tracking errors and weight estimates is shown

    Adaptive Neural Network Control and Wireless Sensor Network Based Localization for UAV Formation

    Get PDF
    We consider a team of unmanned aerial vehicles (UAV\u27s) equipped with sensors and motes for wireless communication for the task of navigating to a desired location in a formation. First a neural network (NN)-based control scheme is presented that allows the UAVs to track a desired position and orientation with reference to the neighboring UAVs or obstacles in the environment. Second, we discuss a graph theory-based scheme for discovery, localization and cooperative control. The purpose of the NN cooperative controller is to achieve and maintain the desired formation shape in the presence of unmodeled dynamics and bounded unknown disturbances. Numerical results are included to illustrate the theoretical conclusion

    Near Optimal Neural Network-Based Output Feedback Control of Affine Nonlinear Discrete-Time Systems

    Get PDF
    In this paper, a novel online reinforcement learning neural network (NN)-based optimal output feedback controller, referred to as adaptive critic controller, is proposed for affine nonlinear discrete-time systems, to deliver a desired tracking performance. The adaptive critic design consist of three entities, an observer to estimate the system states, an action network that produces optimal control input and a critic that evaluates the performance of the action network. The critic is termed adaptive as it adapts itself to output the optimal cost-to-go function which is based on the standard Bellman equation. By using the Lyapunov approach, the uniformly ultimate boundedness (UUB) of the estimation and tracking errors and weight estimates is demonstrated. The effectiveness of the controller is evaluated for the task of nanomanipulation in a simulation environment

    A Robust Controller for the Manipulation of Micro Scale Objects

    Get PDF
    A suite of novel robust controllers is presented for the manipulation and handling of micro-scale objects in a micro-electromechanical system (MEMS) where adhesive, surface tension, friction and van der Waals forces are dominant. Moreover, these forces are typically unknown. The robust controller overcomes the unknown system dynamics and ensures the performance in the presence of actuator constraints by assuming that the upper bounds on these forces are known. On the other hand, for the robust adaptive controller, the unknown forces are estimated online. Using the Lyapunov approach, the uniformly ultimate boundedness (UUB) of the closed-loop manipulation error is shown for pick and place tasks. Simulation results are presented to substantiate the theoretical conclusions

    Neural-Network-Based State Feedback Control of a Nonlinear Discrete-Time System in Nonstrict Feedback Form

    Get PDF
    In this paper, a suite of adaptive neural network (NN) controllers is designed to deliver a desired tracking performance for the control of an unknown, second-order, nonlinear discrete-time system expressed in nonstrict feedback form. In the first approach, two feedforward NNs are employed in the controller with tracking error as the feedback variable whereas in the adaptive critic NN architecture, three feedforward NNs are used. In the adaptive critic architecture, two action NNs produce virtual and actual control inputs, respectively, whereas the third critic NN approximates certain strategic utility function and its output is employed for tuning action NN weights in order to attain the near-optimal control action. Both the NN control methods present a well-defined controller design and the noncausal problem in discrete-time backstepping design is avoided via NN approximation. A comparison between the controller methodologies is highlighted. The stability analysis of the closed-loop control schemes is demonstrated. The NN controller schemes do not require an offline learning phase and the NN weights can be initialized at zero or random. Results show that the performance of the proposed controller schemes is highly satisfactory while meeting the closed-loop stability

    Adaptive Control of Robotic Manipulators using Deep Neural Networks

    Get PDF
    In this paper, we present a lifelong deep learning-based control of robotic manipulators with nonstandard adaptive laws using singular value decomposition (SVD) based direct tracking error driven (DTED) approach. Moreover, we incorporate concurrent learning (CL) to relax persistency of excitation condition and elastic weight consolidation (EWC) for lifelong learning on different tasks in the adaptive laws. Simulation results confirm theoretical conclusions

    Neuro Emission Controller for Minimizing Cyclic Dispersion in Spark Ignition Engines

    Get PDF
    A novel neural network (NN) controller is developed to control spark ignition (SI) engines at extreme lean conditions. The purpose of neurocontroller is to reduce the cyclic dispersion at lean operation even when the engine dynamics are unknown. The stability analysis of the closed-loop control system is given and the boundedness of all signals is ensured. Results demonstrate that the cyclic dispersion is reduced significantly using the proposed controller. The neuro controller can also be extended to minimize engine emissions with high EGR levels, where similar complex cyclic dynamics are observed. Further, the proposed approach can be applied to control nonlinear systems that have similar structure as that of the engine dynamics

    Online Reinforcement Learning Neural Network Controller Design for Nanomanipulation

    Get PDF
    In this paper, a novel reinforcement learning neural network (NN)-based controller, referred to adaptive critic controller, is proposed for affine nonlinear discrete-time systems with applications to nanomanipulation. In the online NN reinforcement learning method, one NN is designated as the critic NN, which approximates the long-term cost function by assuming that the states of the nonlinear systems is available for measurement. An action NN is employed to derive an optimal control signal to track a desired system trajectory while minimizing the cost function. Online updating weight tuning schemes for these two NNs are also derived. By using the Lyapunov approach, the uniformly ultimate boundedness (UUB) of the tracking error and weight estimates is shown. Nanomanipulation implies manipulating objects with nanometer size. It takes several hours to perform a simple task in the nanoscale world. To accomplish the task automatically the proposed online learning control design is evaluated for the task of nanomanipulation and verified in the simulation environmen
    • …
    corecore